DFT investigation of NH3 physisorption on CuSO4 impregnated SiO2.

نویسندگان

  • Jyothirmai Ambati
  • Hamzah Saiyed
  • Stephen E Rankin
چکیده

In this quantum chemical investigation, NH(3) physisorption onto a model of copper sulfate impregnated silica is compared with pure silica and copper sulfate adsorbents. The physisorption process is modeled as direct binding of the NH(3) molecule to the adsorption site of the dry adsorbents and as displacement of a H(2)O molecule by NH(3) in the hydrated complexes. The surface of silica is represented by a hydroxyl group attached to a silsesquioxane cage, H(7)Si(8)O(12)(OH) and silica impregnated with CuSO(4) by the most stable configuration of the cluster containing a CuSO(4) ion pair placed adjacent to the silica cage. H(2)O is systematically added to the dehydrated adsorbents to investigate the role of water in NH(3) adsorption. Modeling hydrated environments of each type of adsorbent is focused on H(2)O molecules that directly coordinate with the active sites. The results indicate that the binding energy of adsorbing NH(3) onto the mixed adsorbent is greater than in pure silica. This enhanced binding in the mixed adsorbent is consistent with improved Brønsted acidity of the silanol in the presence of CuSO(4).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Wireless, Passive Carbon Nanotube-Based Gas Sensor

A gas sensor, comprised of a gas-responsive multiwall carbon nanotube (MWNT)—silicon dioxide (SiO2) composite layer deposited on a planar inductor-capacitor resonant circuit is presented here for the monitoring of carbon dioxide (CO2), oxygen (O2), and ammonia (NH3). The absorption of different gases in the MWNT-SiO2 layer changes the permittivity and conductivity of the material and consequent...

متن کامل

DFT insights into the adsorption of NH3-SCR related small gases in Mn-MOF-74.

Mn-MOF-74 has great potential to catalyze selective catalytic reduction (SCR) reaction with NH3 being the reductant (NH3-SCR). However, the reaction mechanism, in particular the adsorptive properties of key reactive species in Mn-MOF-74, remains ambiguous. Besides, the effects of impurities such as H2O and SO2 on the process need further investigation. In this paper, based on density functional...

متن کامل

High-Performance Few-layer Mo-doped ReSe2 Nanosheet Photodetectors

Transition metal dichalcogenides (TMDCs) have recently been the focus of extensive research activity owing to their fascinating physical properties. As a new member of TMDCs, Mo doped ReSe2 (Mo:ReSe2) is an octahedral structure semiconductor being optically biaxial and highly anisotropic, different from most of hexagonal layered TMDCs with optically uniaxial and relatively high crystal symmetry...

متن کامل

Electronic properties of a pristine and NH3/NO2 adsorbed buckled arsenene monolayer

Analogous to exfoliated 2D sheets of black phosphorene, arsenene is an atomically thin layer of the arsenic crystal. In this paper, we investigate the sensitivity of a pristine arsenene sheet for NH3 and NO2molecules in terms of binding energy, nature of bonding, density of states and current–voltage characteristics. The calculated results based on density functional theory find that both NH3 a...

متن کامل

Investigation of the interaction of carbon dioxide fluid with internal and external single-wall carbon nanotubes by DFT

The effective parameters of (5, 0) and (5, 5) single-wall carbon nanotubes during the interaction with carbon dioxide as sensors are determined. The interaction of carbon dioxide  molecules with internal and external walls of the nanotubes is studied using Gaussian 03 coding by density functional theory (DFT) at the B3LYP/6-311G level of theory. CO2 rotation around tube axles vertically and par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 14 18  شماره 

صفحات  -

تاریخ انتشار 2012